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matrix A is a fact that, to a known extent, is random and depends on the elastic moduh Eijkl, the 
choice of one of the eigenvalues A,, of the matrix Ei3k3 and the number n of half-waves in the 
thickness of the plate. 
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The axisymmetrical contact problem of the indentation of a rigid disc, modelled by a cylindrical punch, into 

an elastic half-space is considered. The upper end of the cylinder is subjected to convective heating or 

cooling and the therma contact between the punch and the half-space is non-ideal. Outside the region of 

contact heat exchange occurs with the external medium in accordance with Newton’s law. The solution of 

the thermo-elasticity problem for the half-space is constructed using the Hankel transformation, and the 

problem of heat conduction for a cylinder is solved by the method of straight lines. The existence of zones 

where the half-space becomes detached from the punch is established. The temperature fields, heat fluxes 

and contact stresses in the interacting bodies are found. 

1. FORMULATION OF THE PROBLEM 

WHEN solving contact problems of thermo-elasticity it is of interest to investigate the phenomenon 
in which a punch becomes separated from the base [l-3]. However, in these and other 
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FE. 1 

investigations, the heat-conduction equation is not solved for the punch, i.e. the temperature of the 
base of the punch or the heat flux is specified. Below we propose a method of solving the 
axisymmetrical contact problems of thermo-elasticity when there is incomplete contact between the 
interacting bodies, taking into account the solution of the heat-conduction problem for a rigid 
cylindrical punch. Outside the punch we assume that convective heat transfer occurs with the 
external medium. There is non-ideal thermal contact between the punch and the base. 

A rigid cylindrical disc of radius a and height His pressed with a force P into an elastic half-space 
(Fig. 1). The upper end of the cylinder is subjected to convective heating or cooling with a 
heat-transfer coefficient yo. Heat exchange’ occurs between the side surfaces and the external 
medium in accordance with Newton’s law with a heat-transfer coefficient of ya. Convective heat 
exchange occurs with the external medium through the unloaded surface of the half-space with a 
heat-transfer coefficient Yh. 

To solve this problem we need to integrate the following equations: 

tptci) 

dz2 
(i - 1,2) 

with the temperature boundary conditions 

z=o: at”‘laz-y~(f”‘-te), O<rGa 

r=a: bW”/6b=-y~f”), 09z~H 

z==H: ~‘“at’~‘/dz--h”‘dt”‘ldz, OeGz 

~“‘~t”‘/~z+h”‘dt”‘/~z=-h(t’~‘-t”~). Obr<a 

dt”‘@t-y,t’LJ, r>a 

(1.2) 

(1.3) 

(1.4) 

and the force boundary conditions 

z-H: u,=/(r), 09rGz; a,=O, r>a; T,,=O, r<w (1.5) 

where Y is Poisson’s ratio, X and t.~ are the Lame coefficients, cx is the temperature coefficient of 
linear expansion, i = 1 relates to the cylindrical punch and i = 2 relates to the half-space, yo, -ya , yh 
are the heat-transfer coefficients between the upper end of the cylinder, the side surfaces of the 
cylinder, the unloaded surface of the half-space on one side and the external medium on the other, 
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respectively, t, is the temperature of the external medium, h-’ is the thermal resistance of the 
contact, A(‘), A(*) are the thermal conductivities of the cylinder and the half-space, andf(r) is the 
specified value of the deposition of the punch. 

2. SOLUTION OF THE PROBLEM FOR THE PUNCH 

Using the finite-difference approximation of the heat-conduction equations (1.2) for a cylinder 
and the boundary conditions (1.3) in the dimensionless radial coordinate p = r/a, the solution of the 
problem for a cylinder can be constructed by the method of straight lines [4] in the region 

As a result we obtain the following system of linear differential equations: 

dvldt=Bv 

Here 

v?’ _ (tin * - - ., t$‘, dt;“/dc, . . ., dtk’/dt) 

(2.1) 

B- 

B, = 

4HZ 4H2 a2Ap2 ,--, agAp 0 (... 70’ 

Z.Z 0 7 * * -9 o 112 1 
Ial,hp41,2(i-1) 

i-2 
( 

0 (... 

where 0 is the zero and I is the unit N X N matrix Ap = pi - pi- 1, i = 1, . . . , N and N is the number of 
points of subdivision. 

The solution of (2.1) can be constructed using the matrix exponential function [5] 

vK)=exp(&).d 

where d is an arbitrary constant vector, found from the boundary conditions (1.3) for each straight 
line. To calculate the matrix exponential function we use the formula [5] 

t”‘(f;)=exp(BC)= [exp(B(~.2-P))jZP 

where q = 5. 2-p is chosen in such a way as to ensure that the calculations are stable. 

3. SOLUTION OF THE PROBLEM FOR THE HALF-SPACE 

Applying the integral Hankel transformation with respect to the coordinate p to Eqs (1.1) and 
(1.2) and the boundary conditions (1.4) and (1..5), the solution of the axisymmetrical equations of 
thermo-elasticity for an elastic half-space in the Hankel transforms can be represented in the form 
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P(%, ~)=I)(f)e-l(c-*’ 

i&(%, C)~%~ikCl(%)+2Ca(%)+k%(t;-~)Cat%)le-t'f-"~ 

+~~*A%-‘~(%) (Gg(~-q ]e-@(E-‘) 

a,(%* ii)=- 2~%aIkC,<%~+Ca(%)+k%t~-~~Cat%)Je-E(c-’1-t 
+p%(E-l)M?(%)e-t(f-‘) 

t,*(%, Cf=2~%ai(~-~f~*(%~-~~*(%~-~%(f;-~~~o(%~l~-E~z-”- 

-pAB(%)f[ l-g(t;-l)]e-E’E-” 

v+l P=~,~+,n-_~CL=- 3h -t 2p 
A-!-2p a 

where B(t), C1 (t), C,(t) are unknown functions. 
By satisfying the last condition of (1.5) and using the relation obtained 

the required functions on the area of contact can be represented as follows: 

(lliir=,-e,g’c,(F,)+e,%-‘B(g), a*~L~,=ul~3C,(~)+asB(%> 

t’“‘]r=,=B(g), ai(“lag]rp,=-F;H13(%) 

4, SATISFACTION OF THE BOUNDARY CONDITIONS FOR 6 = 1 

Using the formula for the inversion of the integral Hankel transform and by satisfying the first two 
force boundary conditions (1.5) we obtain 

(4.1) 

(4.2) 

where n = @z, while the thermal boundary conditions (1.4) lead to the relations 

;h”’ &‘I’ k(s) O” 

-jj-ag+aJ s W, @I) /o(W) dq = t)* P ,< 1 
0 

(4.3) 

By representing the contact stresses in the form of a series 

o: (P) = 2 UJO &Pf 
11 =I 

and introducing the unknown function 

(4.4) 

(4.5) 
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N-l 

x b-4 = bo + c hIJo 04 
II=1 

into relations (4.2) and (4.5), using the formula for the inversion of the integral Hankel transform, 

and evaluating certain integrals [6], we obtain relations for Cl(n) and Cs(-r$, the substitution of 
which into (4.1), (4.3) and (4.4) leads to the following equations: 

dq -f(p), p.< I ) 
m 

h”‘b s 11 
’ o n + ayh 

Jl h) Jo (WJ) dtl + 

where hk are the zeros of the Bessel function 

/n(L) -0. (k=l, . . . , N) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

5. REDUCTION OF THE SOLUTION OF THE PROBLEM TO A SYSTEM OF ALGEBRAIC 
EQUATIONS 

By satisfying relations (4.6)-(4.8) and the boundary conditions (1.3) at a number of equidistant 
points 

&=(I-l)/(N-I), (ill,. . . ( N) 

we obtain a system of 4N linear algebraic equations for finding the unknown coefficients Ui, bi , di , 
(i= 1,. . .,N;j= 1,. . .) 2N), in terms of which we find the required functions 

(5.1) 

~(‘1 (p, I) = ab, “: J, (q) Jo(w) e-,,(E_l, d,., + s 
0 

q + ayh 
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A (q,. E) e-q(C-*) dq + 

where 

Computations were carried out for the case when the material of the cylinder was steel [A(‘) = 22 W/(m K)], 
and the material of the half-space was aluminium [A(*) = 209 W/m K)], ya = y. = oh = 10 m-l, t, = 473 K, 
h = lo4 W/(m2 K), a = 22.9 x low6 K-‘, a=1m,H=0.3m,f=10-4mandN=19. 

We obtained the distribution of the contact stresses (Fig. 2). The change in the sign of ur in the section [0, a] 
confirms the existence of zones in which the half-space becomes detached from the cylindrical punch. 
Consequently, contact between the bodies occurs in the section [0, po], where PO< 1, and hence the first two 
conditions of contact (1.4) and the first condition of (1 S) must relate only to p C pc , while the second condition 
of (1.5) relates to p>pa. In the section po<p< 1 between the lower end of the cylinder and the external 
medium convective heat transfer occurs in accordance with Newton’s law 

where yp is the heat-transfer coefficient between the unloaded surface at the lower end of the cylinder and the 
external medium. 

Satisfaction of the changed boundary conditions leads to the need to solve a new system of 4(N - Z) linear 
algebraic equations for determining the unknown coefficients. The value of the parameter I is obtained by 

successive change in the number of points of subdivision in which a change in the sign of the stresses (T, 
occurred, i.e. the half-space becomes detached from the punch. 
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FIG. 2 
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The final contact stresses are shown in Fig. 3 for a force P, which was found from the condition of equilibrium 
of the punch 

N-f 

The temperature and heat fluxes in the contacting bodies and the vertical displacements of the elastic 
half-space are found from relations (5.1). In Fig. 4 we show, for example, the temperature of the cylinder. 
Curves 1, 2 and 3 correspond to values of z = 0, z = 0.25 m and z = 0.3 m. 

6. CONCLUSIONS 

1. The thermal conductivity of the contact h has a considerable effect on the size of the contact 
zone. It decreases as h increases. [In Fig. 5 region 1 corresponds to h = lo4 W/(m2 K) while region 2 
corresponds to h = lo3 W/(m2 K)]. 

2. The heat-transfer coefficient of the upper end of the cylinder with the external medium also has 
a considerable effect on the size of the contact zone. (In Fig. 6, region 1 corresponds to yo = 10 m-l 
while region 2 corresponds to y. = 5 m-l.) 

3. For a given force P a version of contact po-+= 0 is possible (the left boundary of regions 1 and 2 in 
Figs 5 and 6). No solution of the contact problem exists to the left of the hatched region. 

1. 

2. 
3. 
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The general case of the problem of the thermo-elasticity of non-uniform plates is considered. A formal 

asymptotic expansion is constructed and the limiting problem (when the thickness of the plate approaches 

zero) is obtained. The limiting problem in the general case turns out to be different from the classical one, in 

particular, it contains five unknown functions, and the defining equations contain not only the temperature 

but also its derivatives (although the material of the plate is assumed to obey the Duhamel-Neumann law). 

These effects do not occur in uniform plates of constant thickness. This is obviously the reason why the 

effects stated below have not been mentioned previously, as far as we know. 

A GENERAL scheme of the asymptotic method for passage from a three-dimensional problem of the 
theory of elasticity in a thin region (thickness E-=S 1) to a problem in the theory of plates was 
previously proposed in [ 11. A case which leads to the classical equations of thermo-elastic plates was 
considered in [2] (it turns out that it corresponds to the case when the coefficients of thermal 
expansion of the material of the plate are of the order of E). 

1. FORMULATION OF THE PROBLEM 

Suppose a three-dimensional linearly elastic body occupying the region Q, of characteristic 
thickness E 4 1 is obtained by repetition of an element P, (the periodicity cells, PC) in the x1x2 plane 
(Fig. 1). The condition E Q 1 is formalized in the form ~40. 

The equations of equilibrium of this body have the form [3] 
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